2 research outputs found

    Capsule networks: a new approach for brain imaging

    Get PDF
    Nel campo delle reti neurali per il riconoscimento immagini, una delle più recenti e promettenti innovazioni è l’utilizzo delle Capsule Networks (CapsNet). Lo scopo di questo lavoro di tesi è studiare l'approccio CapsNet per l'analisi di immagini, in particolare per quelle neuroanatomiche. Le odierne tecniche di microscopia ottica, infatti, hanno posto sfide significative in termini di analisi dati, per l'elevata quantità di immagini disponibili e per la loro risoluzione sempre più fine. Con l'obiettivo di ottenere informazioni strutturali sulla corteccia cerebrale, nuove proposte di segmentazione possono rivelarsi molto utili. Fino a questo momento, gli approcci più utilizzati in questo campo sono basati sulla Convolutional Neural Network (CNN), architettura che raggiunge le performance migliori rappresentando lo stato dell'arte dei risultati di Deep Learning. Ci proponiamo, con questo studio, di aprire la strada ad un nuovo approccio che possa superare i limiti delle CNNs come, ad esempio, il numero di parametri utilizzati e l'accuratezza del risultato. L’applicazione in neuroscienze delle CapsNets, basate sull’idea di emulare il funzionamento della visione e dell’elaborazione immagini nel cervello umano, concretizza un paradigma di ricerca stimolante volto a superare i limiti della conoscenza della natura e i limiti della natura stessa

    Modello stocastico per la plasticità sinaptica

    Get PDF
    Nel sistema nervoso centrale i neuroni comunicano l'uno con l'altro attraverso le connessioni sinaptiche e sono soggetti a centinaia di stimoli, ma hanno la capacità di distinguerli l'uno dall'altro. L'abilità delle sinapsi di interpretare questi cambiamenti morfologici e biochimici è detta \textit{plasticità sinaptica} e l'obiettivo di questa tesi è proprio studiare un modello per le dinamiche di questo affascinante processo, da un punto di vista prima deterministico e poi stocastico. Infatti le reazioni che inducono la plasticità sinaptica sono ben approssimate da equazioni differenziali non lineari, ma nel caso di poche molecole bisogna tener conto delle fluttuazioni e quindi sono necessari dei metodi di analisi stocastici. Nel primo capitolo, dopo aver introdotto gli aspetti fondamentali del sistema biochimico coinvolto e dopo aver accennato ai diversi studi che hanno approcciato l'argomento, viene illustrato il modello basato sull'aggregazione delle proteine (PADP) volto a spiegare la plasticità sinaptica. Con il secondo capitolo si introducono i concetti matematici che stanno alla base dei processi stocastici, strumenti utili per studiare e descrivere la dinamica dei sistemi biochimici. Il terzo capitolo introduce una giustificazione matematica riguardo la modellizzazione in campo medio e vede una prima trattazione del modello, con relativa applicazione, sui moscerini. Successivamente si applica il modello di cui sopra ai mammiferi e se ne studia nel dettaglio la dinamica del sistema e la dipendenza dai parametri di soglia che portano alle varie transizioni di fase che coinvolgono le proteine. Infine si è voluto osservare questo sistema da un punto di vista stocastico inserendo il rumore di Wiener per poi confrontare i risultati con quelli ottenuti dall'approccio deterministico
    corecore